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A REPRESENTATION THEOREM FOR RANDOM SETS

BY
W. WEIL (KARLSRUHE) AND J. A. WIEACKER (FREIBURG) .

Abstract. It is shown that every random closed set X in RY,
taking its realizations in the extended convex ring, is (up to equiva-
lence)-the union set of a point process Y of convex particles with the
same invariance properties as X.

1. Random closed sets and point processes of compact particles in R?

are important models for applications in image analysis and stereology (see
for example [4]). In practice, quite often only the union set X = Xy of a
particle process Y is observable and frequently it is essential (e.g. for
projected thick sections) that the particles are compact convex sets (convex
bodies). In that case, X is a random closed set with values in %, the class
of sets F = RY, such that, for any convex body K, F N K is a finite union of
convex bodies (extended convex ring). This raised the question whether every
random %?-set X is equal (in probability) to the union set of some point
process Y on the set 4™ of convex bodies ([5], p. 398). A positive answer was
given in [6] and the result was used to solve some measurability and
continuity problems for geometric functionals of random % -sets. We re-
mark that in a similar situation (point processes of sets of positive reach [7]),
where a corresponding result is lacking, the considerations had to be
restricted to random sets which are known to be the union set of a point
process. o :
The construction given in [6] does however not preserve any invariance
property of the random set, whereas for practical applications it would be
necessary_to know that a stationary and/or isotropic random set X comes
from a point process Y with the same invariance properties. In this note we
show that a modification of the method in [6] leads to a general result of
this kind.

- 2. First we introduce some notation. The classes A% and 4, and the
convex ring % (the class of finite unions of convex bodies) are considered as
topological subspaces of the space % of all closed subsets of R (see [1] for
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~ details concerning the topology on % and its properties). A réndom S - set

is a measurable map X from some probability space (2, U, P) into the
topological space %¥. Similarly, a point process Y on #® is a measurable
map from (2, U, P) into .#, the set of locally finite (countable) collections of
convex bodies with the usual o-algebra (see, e.g. [2] and notice that a
collection of sets corresponds to a simple counting measure). For a point
process Y on ¥, X, denotes the union set of Y. SO, denotes the rotation
group of R? and G? the group of rigid motions. Each geG? has a unique
decomposition g = gt,, where ¢ €SO, and ¢, is the translation by x e R®. For

Fe#, o c #°, xeR and geG’, we use the notation. -

Fixi={ytx|yeF}, #+x: ={F+x|Fes}
and
= {gy|yeF}, go#: = {gF |Fe o},

The map (F, g) —gF from %* xG* into % is continuous [3] and the
map (M, g)—gM from # xG® into .# is measurable [7].

Finally, a random %?-set X ‘(resp'. a point process Y on %) is said to
be g-invariant, for ge G4, if X = gX (resp. Y= gY). Here and in the following
the equality sign means that both random sets (resp. point processes) induce
the same probability measure on .9 (resp. on .#). A random set or point
process which is g-invariant for all translations (resp. rotations) g is called
stationary (resp. isotropic).

3. We now can state our result.

THEOREM Let X be a random & -set. Then there exists a pomt process
Y on A™ such that X = Xy and Yis g, -invariant for each rigid motion g for
which X is gq-invariant. Especially, if X is stationary, then Y is stationary,
and if X is isotropic, then Y is isotropic.

Proof. In [6], Lemma 2, we proved that there is measurable “dissec-
tion” of sets in # into convex bodies, i.. a measurable map

59?‘ Z(%*’)

_(here ) ()" is the topologlcal sum of the product spaces (Ji”’)" =A% ...
x A9, (A#° = {@)) which associates with each Ke % a collection ¢(K)

= (Ky, ..., K,) of convex bodies with K = JK; (i =1, 2, ..., n) and n = n(K)
is the minimal number for which such a representation is possib]e. Since the
bodies K; in £(K) are necessarily different, we may write £ (K)

={K,, ..., K,} in the following.

In order to apply this mapping to a set Fe ,9”“ we first have to dissect F
into pieces in 9. As in [6], we do this by a hypercube tiling C,, ze Z°, of R®.
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Here

= {xeRY x = (%, ..., %), L

1
"'<- - ’
3 X < 3 fori=1,...,d}

and C, = C+z. However, to ensure the invariance properties, we shift F N C,
to the origin, apply &, and shift back. Thus, by

®(F)= U [E(FnC,)—z)+z],
a mapping ®: S~ M is defined which is measurable (see [6]) and obeys F
= | K.
Ke®(F) !
Thus o X is a pomt process on ¥ with union set X.

So far, the construction preserves invariances with respect to lattice
translations t,, ze Z%. In order to get the corresponding result for general
rigid motions we use the above construction not with a fixed but with a
motion invariant random hypercube tiling which is independent of X.

For this purpose, let G§ be the (measurable) set of all rigid motions g
= ot, with 0€S0O, and x (0, 179, let B be the o-algebra of all Borel subsets
of G4 and let 7, be the Haar measure on GY, restricted to G% and normalized.
For g €G’, define &,: & = M by ®,(F) = g® (g~ F). Since the operation of
G* on ¥ and ./ is measurable, @, oX is again a point process on A" with
union set X, and hence the same is true for the point process Y: (2 x G,
ARB, PR1) — A defined by Y(w, g) = 8,(X (w)).

It remains to show that Y has the required invariance properties.

Thus, let X be g,-invariant for a rigid motion g, and let ./ be a
measurable set in .. Since go®,(F) =gog®P(g 'g0'goF) = B,04(go F)
whenever ge€G? and F € ¥, we have

(1) P®to{(®, 9)go Y(w, g)ed}) = £ P({olgo Y(w, g)€}) dro(g)
. G .
= ij({wl D00 (90 X (@))€ A })dro(g)
G
Gj; P(®, ,0Xe gszf)dro(g)
If g=ot, and éo = Qo lxy then God = Qolxg Oy = Q00 -1, I

= 0o th +e_1x -and the last integral in (1) equals

@ [ P@ogurysq-1,,0X € )M (X)dv(0),

804 (0,114
where A7 is Lebesgue measure and v is the normalized Haar measure on SO,.
We consider now a fixed g SO,. Then, for any xe(0, 17%, there is a unique
decomposition x+9¢~ ! xo = y(x)+2z(x) with y(x)e(0, 1]% and z(x)e Z°.
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Since the norm of z(x) is bounded, the mapping ¢: x+—z(x), xe(0, 1]",'
can assume only finitely many values, z,,..., z, say. Defining C;:=
{x€(0, 1]*| z(x) = z;}, we have

k
0,11= U G
i=1
and the C; are disjoint. On each C;, the mapping ¥: x —y(x) is a-translation.

Since, for x, x'€(0, 11%, y(x) = y(x) implies x—x =z(x)—z(x)€eZ? and
hence x = x', Y is injective. Obviously, it is also surjective on (0, 1]%. Thus, ¥

- is a bijection of (0, 1]° leaving the Lebesgue measure A% invariant. We

therefore get .. ..

_‘. P(ngetx_‘_e— 1 o0Xe ﬂ)d/ld(X)
(0,114 B
- j P(<15@oq:,.(x)+z(x) oXe A)di(x)

(0,1

- ‘[ P(QO QQ’Y(I)+2(::) OQ_ ' Qa ! Xe ‘d)dld(x) )
0,1

= | Pleo0?®,00 " o' XeA)di(x)
(0,194

= I P(go0®; 00" Yoo X esd)di* (x)
0,114

= ‘. P(q)eoetx oX e di* (x).
0,114

Using (1), (2) and the invariance of v under gy, we conclude that
PRy ({(®, 9)1g0 Y (@, g)€ o#}) = PR ({(@, )| Y (w, g)e #}).

Hence, Y is go-invariant and the proof is complete. ,

Finally, it should be mentioned that the same argumentation can be
used to prove that a random closed set X in R? is the union set of a point
process Y on the space of all nonvoid compact subsets of R* (considered as a
topological subspace of #7) with the same invariance properties as X.
However, for this result, a simpler proof is possible. The difficulties in our
construction stem from the fact that the particles of Y are required to be

" COnvex.
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