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Abstract. It is shown that every random closed set X in Rd, 
taking its realizations in the extended convex ring, is (up to equiva- 
lence) the union set of a po'int process Y of convex particles with the 
same invariance properties as X. 

1. Random closed sets and point processes of compact particles in P 
are important models for applications in image analysis and stereology (see 
for example [4]). In practice, quite often only the union set X = X, of a 
particle process Y is observable and frequently it is essential (e.g. for 
projected thick sections) that the particles are compact convex sets {convex 
bodies). In that case, X is a random closed set with values in @, the class 
of sets F c Rd, such that, for any convex body K, F n K is a finite union of 
convex bodies (extended convex ring). This raised the question whether every 
random P - s e t  X is equal (in probability) to the union set of some point 
process Yon the set Xd of convex bodies ([5], p. 398). A positive answer was 
given in [6] and the result was used to solve some measurability and 
continuity problems for gebmetric functionals of random 9 - s e t s .  We re- 
mark that in a similar situation (point processes of sets of positive reach [7]), 
where a corresponding result is lacking, the considerations had to be 
restricted to random sets which are known to be the union set of a point 
process. 

The construction given in [6] does however not preserve any invariance 
property of the random set, whereas for practical applications it would be 
necessar_y_to know that a stationary and/or isotropic random set X comes 
from a point process Y with the same invariance properties. In this note we 
show that a modification of the method in [6] leads to a general result of 
this kind. 

2. First we introduce some notation. The classes AF' and 9', and the 
convex ring @ (the class of finite unions of convex bodies) are considered as 
topological subspaces of the space @ of all closed subsets of Rd (see [I] for 
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details concerning the topology on @ and its properties). A random 9 - s e t  
is a measurable map X from some probability space (Q, N, P) into the 
topological space .P. Similarly, a point process Y on .P is a measurable 
map from (a, %, PP) into At, the set of locally finite (countable) collections of 
convex bodies with the usual a-algebra (see, e.g. [2] and notice that a 
collection of sets corresponds to a simple counting measure). For a point 
process Y on P, Xy denotes the union set of Y; SOd denotes the rotation 
group of C and Gd the group of rigid motions. Each g E G ~  has a unique 
decomposition g = ~ t , ,  where Q €SO, and t ,  is the translation by x EF. For 
F EP, d c A@, x €9 and g €Gd, we use the notation - -- 

F $ X :  = {yf x I ~ E F ] ,  d f x :  = {Ff X I  F E ~ }  

and 

The map IF, g) H ~ F  from @ x G" into @ is continuous [3] and the 
map (M, g) H ~ M  from A x Gd into A is measurable [7]. 

Finally, a random 9 -set X (resp. a point process Yon P) is said to 
be g-invariant, for g c  Gd, if X = gX jresp. Y = BY). Here and in the following 
the equality sign means that both random sets (resp. point processes) induce 
the same probability measure on Spd (resp. on 4. A random set or point 
process which is g-invariant for all translations (resp. rotations) g is called 
stationary (resp. isotropic), 

3. We now can state our result. 
THEOREM. k t  X be a random 9 -set. Then there exists a point process 

Y on P such that X = X, and Y is go -invariant for each rigid motion go for 
which X is go -invariant. Especially, if X is stationary, then Y is stationary, 
and if X is isotropic, then Y is isotropic. 

Proof.  In [6], Lemma 2, we proved that there is measurable "dissec- 
tion" of sets in 8' into convex bodies, i.e. a measurable map 

(here ( P I ) "  is the topological sum of the product spaces ( f l y  = SP x . . . 
x .P', (.T')O = (a)) which associates with each K E .P' a collection 5 (K) 
= (K,, . .., KJ of convex bodies with K = U Ki (i = 1, 2, . . ., n) and n = n(K) 
is the minimal number for which such a representation is possible. Since the 
bodies K i  in [(K) are necessarily different, we may write <(K) 
= (K,, .. ., K,) in the following. 

In order to apply this mapping to a set F E  9, we first have to dissect F  
into pieces in .@. As in [6], we do this by a hypercube tiling C,, z E Zd, of Rd. 
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Here 

1 1 
C = {x~Rdl x =(xl ,  . . . ,  xd), -- G xi <- for i = I ,  ..., d ) ,  

2 2 

and C, = C+z. However, to ensure the invariance properties, we shift F n C, 
to the origin, apply 5, and shift back. Thus, by 

@tF) = u [ 5 ( F  n C,>-z)+z], 
zfZd 

a mapping @: 9- di? is defined which is measurable (see [ 6 ] )  and obeys F 
= (J K. - 

KeWF) 
Thus- @OX is a point process on P with union set X. 
So far, the construction preserves invariances with respect to lattice 

translations t,, Z E Z ~ .  In order to get the corresponding result for general 
rigid motions we use the above construction not with a fixed but with a 
motion invariant random hypercube tiling which is independent of X. 

For this purpose, let Gd, be the (measurable) set of all rigid motions g 
= QE, with g €SO, and x ~ ( 0 ,  1ld, let !El be the c-algebra of all Bore1 subsets 
of Gd, and let T, be the Haar measure on Gd7 restricted to Gd, and normalized. 
For g €Gd, define @,: 9' + 4 by Gg (F) = g@ (g-I F). Since the operation of 
Gd on 9 and A is measurable, @,OX is again a point process on with 
union set X, and hence the same is true for the point process Y: (Q x Gi, 
NOB, P@zo) + A defined by Y ( w ,  g) = @,(X(wj). 

It remains to show that Y has the required invariance properties. 
Thus, let X be go -invariant for a rigid motion go and let d be a 

measurable set in A. Since go @, (F) = go g@ (g - g; go F) = QgOg (go F) 
whenever g €Gd and F E ~ ,  we have 

(1) PQro ( ( ~ 3  g)I go Y(w, g) ~ d j )  = j P ( b  I90 Y ( w ,  8) E J ~ ) ~ T O ( ~ )  
 do 

= f P(~ol@,og(goX(o) )~~) )d~o(g)  
3 

= j P(@g0, *XE 4dzo(g). 
c"o 

If g = et, and go = eo txoy then 80 = QO txo et, = go ete - f X  

- - Q ~ Q ~ ~ , ~ - , ~ ~  and the last integral in (1) equals 

(2) 1 p(@~oe~x+p-lxo O X E ~ ) ~ L ~ ( X ) ~ Y ( Q ) ,  
so, (0, lld 

where Id is Lebesgue measure and v is the normalized Haar measure on SO,. 
We consider now a fixed e E  SO,. Then, for any XE(O, 1ldy there is a unique 
decomposition x+g-lxo = y(x)+z(x) with y ( x ) ~ ( O .  Ild and z(x)€Zd. 
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Since the norm of z (x) is bounded, the mapping cp: x HZIX), XE (0. 1Id, 
can assume only finitely many values, z,, . . . , z, say. Defining C,: = 
{x ~ ( 0 ,  I ld  1 z (x) = zi), we have 

and the Ci are disjoint. On each Ci, the mapping $: .u w y ( x )  i s  a translation. 
Since, for x, X' ~(0, lld, y (x) = y (x3 implies x - x' = z (x) - z  (x') EZ* and 
hence x = x', $J is injective. Obviously, it is also surjective on (0, lld. Thus, $ 
is a bijection of (0, lld leaving the Lebesgue measure Ad invariant. We 
therefore get . 

-. 

= .F (@eo~t,.cxl + z(*] 
o x E .4 dAd (x) 

(0, l l d  

Using (I), 42) and the invariance of v under Q,, we conclude that 

Hence, Y is go -invariant and the proof is complete. 
Finally, it should be mentioned that the same argumentation can be 

used to prove that a random closed set X in Rd is the union set of a point 
process Yon the space of all nonvoid compact subsets of Rd (considered as a 
topological subspace of P) with the same invariance properties as X. 
However, for this result, a simpler proof is possible. The difficulties in our 
construction stem from the fact that the particles of Y are required to be 
convex. 
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